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Abstract—The effect of symmetric partitions protruding centrally from the end walls of a rectangular

vertical enclosure on heat transfer rates is investigated numerically. The enclosure has opposite isothermal

walls at different temperatures. The Rayleigh number is varied from 10* to 107 and the aspect ratio from

0.5 to 10. The thickness of the partitions is fixed and equal to one tenth of the width of the enclosure. Their

non-dimensional length (L/H) is varied from 0 (non-partitioned enclosure) to 0.5 (two separate enclosures).

The effect of different thermal boundary conditions at the end walls and at the partitions is included in the
investigation.

INTRODUCTION

THE sTUDY of heat transfer by natural convection in
rectangular enclosures with differentially heated walls
has been the subject of a great number of experimental
and numerical investigations. This is due to their many
applications such as in cavity walls, double-pane win-
dows and solar collectors. Recently, the interests of
researchers included rectangular enclosures with par-
tial partitions, which can possibly reduce convective
heat transfer rates. Nasteel and Greif [1] reported an
experimental study on the effect of partial partitions
extending downwards from the top end wall of a
vertical enclosure of small aspect ratio, AR = 1/2,
for 2.3x10'° < Ra < 1.1 x 10'!. The partitions were
conducting and nonconducting. They found a sig-
nificant reduction in heat transfer rates across the
enclosure, especially for the non-conducting parti-
tions. In a follow-up paper the same authors [2] con-
sidered the effect of Prandtl number. They found
larger heat transfer rates and a greater dependence of
Nu on Ra for silicon oil than for water. They suggested
that the dependence of heat transfer rates on L/H
could be affected by Pr. Winters [3] examined numeri-
cally the effect of Prin a similar geometry. He reported
no significant variation in the isotherm patterns of
silicon oil and water filled enclosures or in the heat
transfer rates and their dependence on Ra.

In the interferometric experiments of Bajorek and
Lloyd [4] the partitions were protruding into a vertical
square air-filled enclosure from both the bottom and
the top end walls. Their length was one quarter of the
height of the enclosure. They observed a reduction in

the Nusselt number along the entire hot and cold
walls, and a 15% decrease in the average Nusselt
number. The influence of the partitions was less pro-
nounced at higher Grashof numbers. This is in agree-
ment with the findings of Chang et al. [5] and of the
present authors [6]. Chang et al. found that increasing
the length or the thickness of the partitions resulted
in larger reductions in heat transfer rates. The de-
pendence of this reduction upon L/H was found
in ref. [6] to be rather complex; short partitions
(L/H < 0.125) can even enhance slightly the heat
transfer rates across the enclosure for a certain range
of AR, Ra and angle of inclination of the enclosure.
In addition, Chang et al. reported that the efficacy
of the partitions in reducing heat transfer rates may
depend on the position of the partitions with respect
to the hot wall.

The flow field inside partitioned and non-par-
titioned enclosures (similar to those studied in ref. [4])
was investigated by Bilski ef al. [7] using laser-Doppler
anemometry. Their results were compared in ref. [6]
with numerical predictions and found to be in good
agreement. Some disagreement was found for the
peak magnitude of both horizontal and vertical vel-
ocities. Similar general good agreement, with devi-
ations in the peak values, is also seen in the com-
parisons of the data of Bilski et al. with the numerical
results of Chang et al. [5], Zhong et al. [8] and with
the experimental results of Krane and Jessee [9].

ElSherbiny et al. [10] concluded that the thermal
boundary conditions at the end walls can affect the
heat transfer rates across rectangular enclosures sig-
nificantly. In ref. [6] this was shown to be true both
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VH{", Nu, dy

p pressure
P dimensionless pressure, pW?*/{ pvat)
Pr Prandtl number, v/a

q local heat flux

Ra  Rayleigh number, (s, —t.) W3 jva
s thickness of end walls

t temperature

NOMENCLATURE
AR enclosure aspect ratio, H; W’ T dimensionless temperature,
b thickness of partitions (t—t)/(th—1)
g acceleration due to gravity I temperature of the hot wall
Gr Grashof number, gf(1, —t. )W /v~ I temperature of the cold wall
H enclosure height u velocity along x (perpendicular to
K thermal conductivity of the fluid isothermal walls)
K, thermal conductivity of the end walls and v velocity along 1 (parallel to isothermal
partitions walls)
L partition length U dimensionless velocity along x, uW/ja
Nu,  local Nusselt number, g W (t, — 1)k vV dimensionless velocity along v, vW/a
Nu  average Nusselt number, X,y coordinates (see Fig. 1)

dimensionless coordinates, x/W and
v/ W, respectively
w enclosure width.

Greek symbols
o thermal diffusivity of the fluid
B thermal expansion coefficient of the fluid
v kinematic viscosity of the fluid.

for partitioned and non-partitioned enclosures. In
addition, it was verified that the thermal boundary
conditions at the end walls and at the partitions’ walls
can influence the efficacy of the partitions in reducing
heat transfer rates across the enclosure. It is expected
that for both partitioned and non-partitioned enclos-
ures the influence of the end-wall boundary conditions
will decrease as the enclosure aspect ratio increases.
Schinkel [11] has shown this to be true for a vertical
non-partitioned enclosure at Ra = 2 x 10°.

adiabatic
or LTP

MATHEMATICAL FORMULATION AND
NUMERICAL METHOD

Figure 1 is a schematic of the enclosure examined
in this study. The partitions protrude centrally from
the top and bottom end walls. They have a finite
thickness, b, which is fixed at 1/10 of the enclosure
width, W.

By using dimensionless variables X, Y. U, V, P, T
(defined in the Nomenclature), and the Boussinesq
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F1G. 1. Schematic of the partitioned rectangular enclosure.



Natural convection heat transfer in a partially—or completely—partitioned vertical rectangular enclosure

approximation, the two-dimensional steady-state
continuity, momentum and energy equations take the
form:
ou + v
axX 8y
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The flow boundary conditions were:
U = V = 0 on solid boundaries. 6]

The thermal boundary conditions on the isothermal
walls were :

T=1atX= —1/2 (hot wall)
T=0at X = 1/2 {cold wall}. {6}

At the end walls and the partitions different sets of
thermal boundary conditions were considered. They
are sketched in Fig. 2 and will be discussed in detail
in the following section.

In this study, Ra was varied between 10* and 107,
AR between 0.5 and 10, and L/H between O (non-
partitioned enclosure) and 0.5 (two separate enclos-
ures). Equations (1)-(4) above were solved using the
computer code Harwell-FLOW3D [12], which is
based on a finite-difference, centred-grid, method. The
SIMPLEC algorithm for pressure-velocity coupling
was chosen [13]. The convergence criterion to stop the

<m I

(i)} adiabatic

I

{ii) LTP

LAL il Lt Lt t LEIEY
conducting wall conducting wall

i i

{iii) Generalized
adiabatic

{iv) Generalized
LTP

FiG. 2. Therma! boundary conditions at the end walls and
partitions.
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outer iterations was that the mass flow residual fell
below 1077 times the mass flow associated with the
main circulation cell. Non-uniform computational
grids, having 24 x 24 control volumes in the case of
non-partitioned enclosures, and 32 x 32 in the case of
partitioned enclosures, were adopted (Figs. 3(a) and
{b)). This allowed satisfactory grid-independence of
the most relevant computational result (average Nus-
selt number, Nu), as shown in Fig. 4 for the case
AR =10, L/H=0 and 0.25, Ra=3.5x10° and
adiabatic thermal boundary conditions. Additional
control volumes were used in the end walls in the case
of ‘generalized” boundary conditions (Figs. 2(iii)
and (iv)). The central differencing scheme (CDS)
was used whenever possible for the advective terms
in order to prevent numerical diffusion errors. Up to
Ra = 3.5x 10° results obtained by using CDS and
hybrid-upwind differencing (HDS) differed less than
1% in Nu and negligibly in the peak velocities. For
Ra = 1x10° and 3.5x 10 the CDS solution exhi-
bited some spurious oscillations and convergence was
achieved only by using small underrelaxation factors,
while the difference in Nu between the CDS and the
HDS results increased to 3% in the worst case

@ |
i
11
(b)

= e e i = 2os o e

FiG. 3. Computational grids for a non-partitioned and for a

partitioned enclosure (fluid region only) : (a) non-partitioned

enclosure (24 x 24); (b) partitioned enclosure, L/H = 0.25
(32x32).
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FiG. 4. Sensitivity of Nu to the number of grid points for a partitioned and a non-partitioned enclosure
(Ra = 3.5x 10°, 4R = 10, adiabatic boundary conditions).

(AR =10, L/{H =0, LTP, 24 x24 grid). For Ra =
1x 107 convergence was obtained only with HDS.
Al results presented here are based on HDS only
at the highest Rayleigh number (1 x 107) and on CDS
otherwise. Computation times, ranged from 1 to 20 s
on an IBM 3090, depending on Rayleigh number, par-
tition length, aspect ratio and boundary conditions.

EFFECT OF THERMAL BOUNDARY
CONDITION ON HEAT TRANSFER RATES

Non-partitioned enclosures

For non-partitioned enclosures (L/H = 0) the fol-
lowing end-wall thermal boundary conditions were
tested :

(i) adiabatic: 67/0Y = 0;

(i) linear temperature profile (LTP): T = 1/2—X;

(iii) generalized adiabatic: end walls of finite thick-
ness, s, and conductivity, K,, with é7/0Y = 0 along
their outer sides;

(iv) generalized L'TP: as in (iii) above, but with
T = 1/2— X along their outer sides.

When the ‘generalized’ boundary conditions (iii) or
(iv) are used, the ratios s/ W and K,/K become impor-
tant parameters. For generalized adiabatic conditions,
it was shown in ref. [6] that varying s/W and K,/K
resuits in a variation of the local and average Nusselt
number between the maximum and minimum values
that are obtained with adiabatic (i) and (ii) conditions,
respectively. Results obtained for a square vertical
non-partitioned cavity at Ra=3.5x10° are sum-
marized in Fig. 5(a); it shows Nu isopleths in the
plane of s/W and K,/K. As seen in the figure, Nu
reaches an asymptotic value for K,/K> 10 at all
values of s/ W, and for s/W > 1 at all values of K,/K.

In the present study, the effect of varying s/W and
K,/K for the ‘generalized LTP" case was also inves-

tigated. Results are more complex than for the ‘gener-
alized adiabatic’ case; they are summarized in Fig.
5(b}, again for a vertical non-partitioned enclosure at
Ra = 3.5%x10°. The maximum value of Nu, 6.6, can
be obtained for a large range of s/W and small K,/K.
Similarly, the minimum value, 4.9, can be obtained
for a large range of K,/K and small s/W. (Note that
with ‘generalized adiabatic’ boundary conditions the
minimum Nu of 4.9, corresponding to LTP boundary
conditions (ii), cannot be attained for any com-
bination of s/W and K,/K.)

In all subsequent runs, and in accordance with
earlier work of the present authors, the values s/W =
0.1 and K /K = 100 were chosen as representative of
realistic configurations and used in conjunction with
‘generalized adiabatic® and ‘generalized LTP’ con-
ditions. The resulting set of boundary conditions will
be referred to as ‘standard adiabatic’ and ‘standard
LTP’ throughout this paper.

An impression of the influence of thermal boundary
conditions on heat transfer rates is given by Fig. 6,
which reports Nu as a function of Ra for a non-
partitioned square enclosure (AR = 1) under all four
boundary conditions. Several experimental and
numerical results by different authors are reported for
comparison. Our results are in excellent agreement
with the numerical predictions of Schinkel [11], Cat-
ton et al. [14] and Chen and Talaie [15], who assumed
either adiabatic or LTP end walls. The agreement with
the experimental results of Bajorek and Lloyd [4] and
Schinkel [11] is best when LTP conditions are
assumed. Some disagreement exists with the exper-
imental results of Arnold ef 4/, [16] especially at high
Rayleigh numbers.

Figure 7 reports similar comparisons for an en-
closure having AR = 10. The experimental results of
ElSherbiny [17] fall slightly above the present pre-
dictions, while the predictions of Chen and Talaie [15]
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FiG. 5. Dependence of Nu upon s/W and k,/k for a square, non-partitioned enclosure at Rz = 3.5x 10°
when ‘generalized” boundary conditions are used: (a) ‘generalized adiabatic’ boundary conditions; (b)
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F1G. 6. Comparison of results for AR = 1, non-partitioned enclosure (lines, predictions; symbols, exper-

imental data).
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FiG. 7. Comparison of results for 4R = 10, non-partitioned enclosure (lines, predictions ; symbols, exper-
imental data).

fall below them. The difference in Nu associated with
the use of different boundary conditions is smaller
than for AR =1, but is still significant, especially at
low Rayleigh numbers.

The dependence of Nu upon Ra can be approxi-
mated for all aspect ratios by

Nu=1
Nu= f(AR)* Ra'"*

(Ra < 10%)
(Ra > 10%) N

with a smooth fit between the two regions. The
exponent of Ra is slightly larger than 1/4 (0.27-0.28)
for the lower aspect ratios (0.5, 1). The function f is
different for each set of boundary conditions. The
local Nusselt number, Nu,, along the hot wall, com-
puted using all four boundary conditions, for a square
non-partitioned enclosure at Ra = 3.5x 10°, is com-
pared with experimental results of Bajorek and Lloyd
4] in Fig. 8(a). ‘Standard LTP’ conditions give the
best agreement (see also the reported values of Nu).
Clearly, they approximate better than the others the
actual thermal boundary conditions of the exper-
iments (see discussion in refs. [6, 18]).

EFFECT OF THERMAL BOUNDARY
CONDITIONS ON HEAT TRANSFER RATE

Partitioned enclosures

In the case of partitioned enclosures, the thermal
boundary conditions at the partitions’ walls also play
a role. Partitions can be assumed to be adiabatic,
isothermal, or conducting, and their thickness and
conductivity must be considered. By combining these
options with those concerning the end walls, a very
large number of possible boundary conditions ensues.
However, in the present study the following sim-
plifying assumptions were made (see Fig. 2). The most
natural extension of adiabatic conditions consists of
assuming the partitions to be also adiabatic. LTP

conditions can be extended to partitioned enclosures
assuming the partitions’ walls to be isothermal (at
T = 0.5 for infinitely thin partitions, or at the appro-
priate corner temperature along end walls in the case
of finite-thickness partitions). Finally, ‘generalized’
conditions can be extended by assuming conducting
partitions, having the same K,/K ratio as the end
walls.

In Fig. 8(b), the local Nusselt number computed
using the boundary conditions defined above is com-
pared with experimental results of ref. [4] for a square
enclosure having L/H = 0.25 at Ra = 3.5 x10°. The
experimental points lie closest to the LTP predictions
(see also reported values of Nu). Thus, both for par-
titioned and non-partitioned enclosures LTP or ‘stan-
dard LTP’ boundary conditions yield better agree-
ment with the experimental results of Bajorek and
Lloyd than adiabatic or ‘standard adiabatic’ ones.

The influence of boundary conditions on heat trans-
fer rates for different partition lengths can be observed
in Fig. 9, which reports Nu as a function of L/H
for Ra = 3.5%x10°, AR =1 and all four boundary
conditions. For short partitions, adiabatic conditions
still give the highest value of Nu, and LTP conditions
the lowest. However, for long partitions, adiabatic
conditions yield low heat transfer rates, as Nu tends
to zero in the limit of L/H — 0.5. The value of L/H at
which the adiabatic curve falls below the others is
~0.4 for this AR and Ra. Our results show that this
value increases with Ra and with 4R.

For both partitioned and non-partitioned enclos-
ures, the influence of thermal boundary conditions
decreases with increasing aspect ratio. This is shown
in Fig. 10, which reports the percentage difference
between adiabatic and LTP predictions as a function
of AR for Ra = 3.5x10° and L/H =0, 0.125, and
0.25. As seen in the figure, the influence of boundary
conditions is higher for partitioned than for non-par-
titioned enclosures.
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Fi16. 8. Nusselt number profiles along the hot wall for a non-partitioned and a partitioned enclosure
(experimental data [4] vs predictions using different thermal boundary conditions): (a) non-partitioned
enclosure. AR = |, Ra = 3.5 x 10”; (b) partitioned enclosure, AR = 1, Ra = 3.5x 10°.
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FiG. 10. Percentage difference between values of Nu computed using adiabatic and LTP boundary
conditions as a function of the aspect ratio (Ra = 3.5 x 10°).

EFFECT OF PARTITIONS ON HEAT
TRANSFER RATES

Figure 9 shows that, under the conditions con-
sidered (AR =1, Ra =3.5x10%), short partitions
(L/H < 0.125) do not reduce Nu. In fact, they may
enhance slightly the heat transfer rate. In our com-
putations, this was found to occur at AR =1 and 2
and Ra in the range 10°-10°,

Figures 11 and 12 are plots of Nuvs Rafor AR = |
and 10, respectively, and for different values of L/H
including the case of two separate coupled enclosures
(L/H = 0.5). Examination of these figures shows that,
for a given aspect ratio, the effect of partitions is much
more pronounced at lower Rayleigh numbers. This is
in agreement with refs. [4, 5] and with earlier work of
the present authors [6]. For LTP conditions (Figs.
11(b) and 12(b)), it can be observed that an enclosure
having long partitions (L/H = 0.375) behaves much
like a completely divided enclosure at low Ra, but
much like a non-partitioned enclosure at high Ra. By
comparing Figs. 11 and 12, it can be seen that short
partitions {L/H < 0.25) are much more effective at
high aspect ratios. The influence of 4R on the efficacy
of partitions is better evidenced in Fig. 13 which shows
Nu as a function of AR at Ru = 3.5 x 10° for different
values of L/H and for adiabatic and LTP boundary
conditions. Short partitions are least effective at
1 € AR < 3. Thus, the case of the square cavity is not
representative in this respect.

The present investigation showed two basic mech-
anisms by which partitions can reduce heat transfer
rates in enclosures. At low aspect ratios, partitions do
not alter the unicellular flow pattern, typical of the
non-partitioned enclosure. Thus, their effect is limited
to reducing the fluid flow rate along the isothermal
walls, thus reducing moderately, and more or less
uniformly, the local Nusselt number. This is shown in
Figs. 14(a)—(c) for Ra = 3.5x10° and AR = 1. Only

LTP results are reported. They include profiles of
Nu, along the hot wall for different L/H (a), plus
streamlines (b) and isotherms (c) for L/H = 0.25. The
reduction in Nu for this value of L/H is only 12%;
the corresponding reduction in the flow rate is
~25%.

At high aspect ratios, on the contrary, the presence
of partitions results in the breaking down of the
unicell, and in the formation of secondary cells par-
ticularly intense near the bottom of the hot wall and
the top of the cold wall (i.e. where Nu has a maximum
in the non-partitioned enclosure). This results in a
strong local reduction of Nu, ; the enclosure behaves
much like a stack of three cavities, the central one
being scarcely affected by the partitions and the
extreme ones being almost completely divided. Alse
the average Nusselt number decreases more than in
the low-aspect ratio case. This is shown in Figs. 15(a)-
(¢) for AR = 10, Ra = 3.5x 10°, LTP boundary con-
ditions. The L/H = 0.25 partitions reduce Nu by 30%
in this case, while the corresponding reduction in the
mass flow rate is 31%.

The case L/H = 0.5 (complete partition dividing the
enclosure in two separate zones) has been particularly
studied, both experimentally and numerically for its
special relevance to engineering applications such as
multiple-glazed solar collectors or windows. Ander-
son and Bejan [19] reported that a thin central alu-
minium partition in a water-filled enclosure having
AR = 1/3 at Ra = 10°-10"" reduced the overall heat
transfer rate by a factor (N+1)~%¢' where N is the
number of partitions (a factor of 0.66 for N = 1).
Nishimura e? al. [20] performed both an experimental
and a numerical investigation. In their experiments
the partitions were made of thin copper plates. The
working fluid was water, the enclosure aspect ratios
were 4 and 10 and 10 < Ra < 10°. In these exper-
iments they found a heat transfer reduction by a factor
of 0.42 for a single partition. In their numerical simu-
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(a) 5

yA

o4

—l M0
- LM =015
m i/ 0.5
» L/H =035
L=

(non-partitioned)

:5 {completely divided)

(b)

FiG. 15. Influence of partitions on Nusselt number profiles, streamlines and isotherms for AR = 10,
Ra = 3.5% 10° and LTP boundary conditions: (a) Nusselt number profiles along the hot wall for different
values of L/H ; (b) streamlines for L/H = 0.25; (c) isotherms for L/H = 0.25.
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F1G. 16. Reduction in Nu induced by a complete partition (L/H = 0.5) for AR =1 and 10.

lations (AR =4, Pr=6, 10° < Ra<g107) they
reported a reduction by a factor (N+1)"! (a factor
of 0.5for N =1).

A simplified analysis reveals that, if the central par-
tition is assumed to be infinitely thin and isothermal

(at T = 1/2), its effect consists merely of replacing
the original enclosure (having aspect ratio AR and
Rayleigh number Ra) with two enclosures in series,
each having an aspect ratio 24 R and Rayleigh number
Ra/16. Thus, if the dependence of Nu upon AR and
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Ra is generically indicated as Nu = g(AR, Ra), the
expected reduction factor due to the partition is

Nttguri/ Nttnon e = 9(2AR, Ra/16)/g(AR. Ra). (8)

In the limit of high AR and high Rea, but still in the
laminar region, Nu becomes roughly independent of
AR and increases as Ra''*, so that the expected
reduction factor is (1/16)"* = 0.5. For low AR, a
smaller reduction factor is expected. duec to Nu
decreasing with increasing AR (Fig. 13). For low Ru
(< 1x10%), the reduction factor will be larger, due to
Nu tending to 1 for Ra — 0 (equation (7)). Deviations
from this overall behaviour will result from the ther-
mal coupling [21, 22] in this case between the two
demi-enclosures across a conducting partition, and
from the finite thickness of the partition.

Among the present computational results for
L/H = 0.5, the ‘standard adiabatic’ and ‘standard
LTP’ ones, in which both the end walls and the par-
titions are assumed to be of finite thickness 0.1 W
and conductivity 100K, are closest to situations of
practical interest. Note, however, that Fig. 9 shows
the resulting Nu at L/H = 0.5 to be almost coincident
with that computed under LTP conditions (roughly
corresponding to an isothermal partition at T = 1/2).
This indicates that the effect of the thermal coupling
between the two demi-enclosures is not very large.
The reduction factor predicted with ‘standard LTP”
boundary conditions is reported as a function of Ra
in Fig. 16 for AR = 1 and 10. The results are coherent
with the above analysis from a qualitative point of
view. The issue of coupled flows in completely par-
titioned enclosures, however, requires further and
more detailed investigation.

CONCLUSIONS

A parametrical study was conducted on the efficacy
of partitions, protruding from the end walls of a ver-
tical rectangular enclosure, in reducing heat transfer
rates. Over 400 cases, covering the range AR = 0.5—
10, Ra = 10*~107, and L/H = 0-0.5, were computed.
The influence of thermal boundary conditions at the
end walls and at the partitions was studied and found
to be relevant, specially for low-aspect ratio enclos-
ures. ‘Generalized’ boundary conditions were intro-
duced as more appropriate to simulate situations of
practical engineering interest. The efficacy of the par-
titions was found to depend in a complex way upon
ARand Ra, and to be greatest for low Ra and high AR.
The mechanism responsible for this large reduction in
heat transfer rates was found to be the breaking down
of the unicellular circulation near the regions where
Nu, is maximum in non-partitioned enclosures. How-
ever, partitions having L/H < 0.25 never reduce Nu
by more than 30%. For intermediate AR (1-2) and
Ra (10°-10°), very short partitions are not effective
and can even enhance heat transfer rates. For com-
pletely divided enclosures (L/H = 0.5) our results

indicate a reduction in Nu by a factor ~0.4 for
AR =10 and high Ra (Ru > 10%), while no simple
scaling law is applicable for small aspect ratio and Ra.
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CONVECTION THERMIQUE NATURELLE DANS UNE CAVITE RECTANGULAIRE
VERTICALE PARTIELLEMENT OU COMPLETEMENT CLOISONNEE

Résumé—On étudie numériquement 'effet sur les flux thermiques de partitions symétriques partant du
centre des parois terminales d’une cavité rectangulaire verticale. La cavité a des parois opposées isothermes
a des températures différentes. Le nombre de Rayleigh varie de 10* 4 107 et le rapport de forme de 0,5 &
10. L’épaisseur des cloisons est fixée égale a un dixiéme de la largeur de la cavité. Leur longueur adim-
ensionnelle (L/H) varie de zéro (cavité sans cloison) a 0,5 (deux cavités séparées). On considére dans
I’étude I'effet de différentes conditions aux limites sur les parois terminales et sur les cloisons.

NATURLICHE KONVEKTION IN EINEM TEILWEISE—ODER VOLLSTANDIG—
UNTERTEILTEN SENKRECHTEN RECHTWINKLIGEN HOHLRAUM

Zusammenfassung—Der EinfluB symmetrischer Trennwiénde, die in einem rechtwinkligen vertikalen
Hohlraum in der Mitte der Stirnwénde herausstehen, auf den Wirmeibergangskoeffizienten wird numer-
isch untersucht. Der Hohlraum besitzt gegeniiberliegende isotherme Winde mit unterschiedlichen Tem-
peraturen. Die Rayleigh-Zahl wird von 10* bis 107 und das Seitenverhdltnis von 0,5 bis 10 variiert.
Die Dicke der Trennwinde ist unverdnderlich. Sie entspricht einem Zehntel der Hohlraumbreite. IThre
dimensionslose Linge (L/H) wird von 0 (nicht unterteilter Hohlraum) bis 0,5 (zwei getrennte Hohlriume)
variiert. Die Auswirkung unterschiedlicher thermischer Randbedingungen an den Stirnseiten und an den
Trennwinden wird in die Untersuchung einbezogen.

ECTECTBEHHOKOHBEKTHUBHLIN TEIIJIOITEPEHOC B YACTUYHO HJIM IIOJHOCTHIO
CEKIITMOHHUPOBAHHBIX BEPTUKAJIBHBIX NMPAMOVYIOJIBHBIX IMOJOCTAX

Ammoramms—YnCICHHO HCCENYeTCS BIMAHAE CHMMETPHYHBIX MEPETOPOMOK, YCTAHOBJICHHBIX B LEHTpa-
JIbHOH YacTH TOPUEBHX I'PAHHMI] BEPTHKAJILHOMN I10JIOCTH, HA HHTEHCHBHOCTBb TerutonepeHoca. Ha nporu-
BOMOJIOXKHBIX H30TEPMHYECKHX CTEHKAX MOJOCTH NOANEPXABAIOTCA Pa3IHYHbIE TEMNIEPATYPhl. 3HAUCHHS
yucna Panes uamensnorcs 8 amanasone 104107, a oTHomenne pasmepos nojocra (H/W) ot 0,5 mo 10.
Tomu#Ha NEPEropoaoX NOCTOSHHA M COCTAaBJIAET OHY AECATYIO 4acTh OT LUIMPHHH noxoctd. Ux Ges-
pasMepHas mmuHa (L/H) u3MeHseTcs OT HyJisl (HECEKIMOHHPOBaHHAA MoJIocTs) Ao 0,5 (aBe pasnenbHble
nonoctH). Viccreaosanocs BIASAHEE Pa3HYHBIX TEIJIOBBIX YCNOBHH Ha TODIEBHLIX MPAaHHLAX M HEpero-
pOIKax Ha MHTEHCHBHOCTD TEILIONEPEHOCA.



