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Abstract-The effect of symmetric partitions protruding centrally from the end walls of a rectangular 
vertical enclosure on heat transfer rates is investigated numerically. The enclosure has opposite isothermal 
walls at different temperatures. The Rayleigh number is varied from lo4 to lo7 and the aspect ratio from 
0.5 to 10. The thickness of the partitions is fixed and equal to one tenth of the width of the enclosure. Their 
non-dimensional length (L/H) is varied from 0 (non-partitioned enclosure) to 0.5 (two separate enclosures). 
The effect of different thermal boundary conditions at the end walls and at the partitions is included in the 

investigation. 

INTRODUCTION 

THE STUDY of heat transfer by natural convection in 
rectangular enclosures with differentially heated walls 
has been the subject of a great number of experimental 

and numerical investigations. This is due to their many 
applications such as in cavity walls, double-pane win- 
dows and solar collectors. Recently, the interests of 
researchers included rectangular enclosures with par- 
tial partitions, which can possibly reduce convective 
heat transfer rates. Nasteel and Greif [l] reported an 
experimental study on the effect of partial partitions 
extending downwards from the top end wall of a 
vertical enclosure of small aspect ratio, AR = l/2. 

for 2.3 x 10” < Ra < 1.1 x 10”. The partitions were 

conducting and nonconducting. They found a sig- 
nificant reduction in heat transfer rates across the 
enclosure, especially for the non-conducting parti- 
tions. In a follow-up paper the same authors [2] con- 
sidered the effect of Prandtl number. They found 
larger heat transfer rates and a greater dependence of 
Nu on Ra for silicon oil than for water. They suggested 
that the dependence of heat transfer rates on L/H 

could be affected by Pr. Winters [3] examined numeri- 
cally the effect of Pr in a similar geometry. He reported 
no significant variation in the isotherm patterns of 
silicon oil and water filled enclosures or in the heat 
transfer rates and their dependence on Ra. 

In the interferometric experiments of Bajorek and 
Lloyd [4] the partitions were protruding into a vertical 
square air-filled enclosure from both the bottom and 
the top end walls. Their length was one quarter of the 
height of the enclosure. They observed a reduction in 

the Nusselt number along the entire hot and cold 
walls, and a 15% decrease in the average Nusselt 
number. The influence of the partitions was less pro- 
nounced at higher Grashof numbers. This is in agree- 
ment with the findings of Chang et al. [S] and of the 
present authors [6]. Chang et al. found that increasing 
the length or the thickness of the partitions resulted 
in larger reductions in heat transfer rates. The de- 
pendence of this reduction upon L/H was found 
in ref. [6] to be rather complex; short partitions 
(L/H < 0.125) can even enhance slightly the heat 
transfer rates across the enclosure for a certain range 
of AR, Ra and angle of inclination of the enclosure. 
In addition. Chang et al. reported that the efficacy 
of the partitions in reducing heat transfer rates may 
depend on the position of the partitions with respect 

to the hot wall. 

The flow field inside partitioned and non-par- 
titioned enclosures (similar to those studied in ref. [4]) 
was investigated by Bilski et al. [7] using laser-Doppler 
anemometry. Their results were compared in ref. [6] 
with numerical predictions and found to be in good 

agreement. Some disagreement was found for the 
peak magnitude of both horizontal and vertical vel- 
ocities. Similar general good agreement, with devi- 
ations in the peak values, is also seen in the com- 
parisons of the data of Bilski et al. with the numerical 
results of Chang et al. [S], Zhong et al. [8] and with 
the experimental results of Krane and Jessee [9]. 

ElSherbiny et al. [lo] concluded that the thermal 
boundary conditions at the end walls can affect the 
heat transfer rates across rectangular enclosures sig- 
nificantly. In ref. [6] this was shown to be true both 
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NOMENCLATURE 

AR enclosure aspect ratio, H: 14’ r dimensionless temperature, 

h thickness of partitions (t - fC)l(fh - L) 

.rl acceleration due to gravity th temperature of the hot wall 

Gf Grashof number, .yp(t,, - t,) W ‘iv’ f, temperature of the cold wall 

H enclosure height 11 velocity along s (perpendicular to 

K thermal conductivity of the fluid isothermal walls) 

4 thermal conductivity of the end walls and L velocity along ~1 (parallel to isothermal 

partitions walls) 

L partition length Ii dimensionless velocity along X, u W/cc 

Nil,. local Nusseh number, q W/(t,, - r,)k V dimensionless velocity along y. L’W/M 

Nu average Nusselt number. .Y. 1 
A’,’ Y 

coordinates (see Fig. I) 

l/Hi”; z Nu, dj, dimensionless coordinates, s/ W and 

P pressure ~1 W, respectively 

P dimensionless pressure, p W’/( pa) W enclosure width. 

PI Prandtl number, v/a 

Y local heat flux Greek symbols 

RU Rayleigh number, gfi(rh - t,) W3/vx thermal diffusivity of the fluid 

s thickness of end walls ; thermal expansion coefficient of the fluid 

I temperature I! kinematic viscosity of the fluid. 

for partitioned and non-partitioned enclosures. In MATHEMATICAL FORMULATION AND 

addition, it was verified that the thermal boundary NUMERICAL METHOD 

conditions at the end walls and at the partitions’ walls 

can influence the efficacy of the partitions in reducing Figure 1 is a schematic of the enclosure examined 
heat transfer rates across the enclosure. It is expected in this study. The partitions protrude centrally from 
that for both partitioned and non-partitioned enclos- the top and bottom end walls. They have a finite 
ures the influence of the end-wall boundary conditions thickness, b, which is fixed at l/l0 of the enclosure 
will decrease as the enclosure aspect ratio increases. width, W. 
Schinkel [I l] has shown this to be true for a vertical By using dimensionless variables X, Y. U, V, P, T 
non-partitioned enclosure at Ra = 2 x 10’. (defined in the Nomenclature). and the Boussinesq 

isothermal 
hot wall, t, 

\ 

adiabatic 
or LTP 

I 

solid wall 1 

solid wall 

b 

or LTP 

FIG. I. Schematic of the partitioned rectangular enclosure. 
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approximation, the two-dimensional steady-state 
continuity, momentum and energy equations take the 
form : 

au av 
Y$-~‘O 

$g+vg]- -g+p$g+gq (2) 

gJg+vg]= --g+[g+gq+RaT 

aT arr av av 
U@V~*=~+I@. 

(3) 

(4) 

The flow boundary conditions were : 

U = V = 0 on solid bounda~es. (5) 

The thermal boundary conditions on the isothermal 
walls were : 

T= latX= -1~2~otwall) 

T = 0 at X = l/2 (cold wall). (6) 

At the end walls and the partitions different sets of 
thermal boundary conditions were considered. They 
are sketched in Fig. 2 and will be discussed in detail 
in the following section. 

In this study, Ra was varied between lo4 and 107, 
AR between 0.5 and 10, and L/H between 0 (non- 
partitioned enclosure) and 0.5 (two separate enclos- 
ures). Equations (l)-(4) above were solved using the 
computer code Harwell-FLOW3D [12], which is 
based on a bite-difference, centred-god, method. The 
SIMPLEC algorithm for pressure-velocity coupling 
was chosen [ 131. The convergence criterion to stop the 

fi) adiabatic (ii) LTP 

/ conducting wall 1 conducting wall 

(iii) Generalized (iv) Generalized 
adiabatic LTP 

FIG. 2. Thermal boundary conditions at the end walls and 
partitions. 

outer iterations was that the mass flow residual fell 
below 1O-3 times the mass flow associated with the 
main circulation cell. Non-uniform computational 
grids, having 24 x 24 control volumes in the case of 
non-partitioned enclosures, and 32 x 32 in the case of 
partitioned enclosures, were adopted (Figs. 3(aJ and 
(b)). This allowed satisfactory grid-independence of 
the most relevant computational result (average Nus- 
selt number, Nu), as shown in Fig. 4 for the case 
AR = 10, L/H = 0 and 0.25. Ra = 3.5x 105, and 
adiabatic thermal boundary conditions. Additional 
control volumes were used in the end walls in the case 
of ‘generalized’ boundary conditions (Figs. Z(iii) 
and (iv)). The central differencing scheme (CDS) 
was used whenever possible for the advective terms 
in order to prevent numerical diffusion errors. Up to 
Ru = 3.5 x lo5 results obtained by using CDS and 
hyb~d-upwind differencing (HDS) differed less than 
1% in JVu and negligibly in the peak velocities. For 
Ra = 1 x lo6 and 3.5 x IO6 the CDS solution exhi- 
bited some spurious oscillations and convergence was 
achieved only by using small underrelaxation factors, 
while the difference in Nta between the CDS and the 
HDS results increased to 3% in the worst case 

(a) 

(bf 

FIG. 3. Computational grids for a non-partitioned and for a 
partitioned enclosure (fluid region only) : (a) non-partitioned 
enclosure (24 x 24) : (b) partitioned enclosure, L/H = 0.25 

(32 x 32). 
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uf grid points X and Y 

FIG. 4, Sensitivity of MU to the number of grid points for a partitioned and a non-partitioned enclosure 
(Ru = 3.5 x IO”, AR = 10, adiabatic boundary conditions). 

(AR = 10, L/H = 0, LTP, 24 x 24 grid). For Ra = 
1 x 10’ convergence was obtained only with HDS. 
All results presented here are based on HDS only 
at the highest Rayleigh number (1 x 10’) and on CDS 
otherwise. Computation times, ranged from 1 to 20 s 
on an IBM 3090, depending on Rayleigh number, par- 
tition length, aspect ratio and boundary conditions. 

EFFECT OF THERMAL BOUNDARY 

CQNDITION DN HEAT TRANSFER RATES 

Non-partitioned enclosures 
For non-partitioned enclosures (L/H = 0) the fol- 

lowing end-wall thermal boundary conditions were 
tested : 

(I) adiabatic : i? T]J Y = 0 ; 
(ii) linear temperature profile (LTP) : T = l/2 - X; 
(iii) generalized adiabatic : end walls of finite thick- 

ness, s, and conductivity, K,, with aT/ja Y = 0 along 
their outer sides ; 

(iv) generalized LTP: as in (iii) above, but with 
T = l/2 -X along their outer sides. 

When the ‘generalized’ boundary conditions (iii) or 
(iv) are used, the ratios s/Wand K,/K become impor- 
tant parameters. For generalized adiabatic conditions. 
it was shown in ref, [(s] that varying s/W and &,/xl 
results in a variation of the local and average Nusselt 
number between the maximum and minimum values 
that are obtained with adiabatic (i) and (ii) conditions, 
respectively. Results obtained for a square vertical 
non-partitioned cavity at Ra = 3.5 x 10’ are sum- 
marized in Fig. 5(a) ; it shows Nu isopleths in the 
plane of s/W and J&/K. As seen in the figure, NL~ 
reaches an asymptotic value for K,/K > 10 at all 
values of s/W, and for s/W > 1 at all values of K,/K. 

In the present study, the effect of varying s/W and 
K,/K for the ‘generalized LTP’ case was also inves- 

tigated. Results are more complex than for the ‘gener- 
alized adiabatic’ case ; they are summarized in Fig. 
S(b), again for a vertical non-partitioned enclosure at 
Ra = 3.5 x 105. The maximum value of Nu, 6.6, can 
be obtained for a large range of s/W and small K,/K. 
Similarly, the minimum value, 4.9, can be obtained 
for a large range of K,/K and small s/W. (Note that 
with ‘generalized adiabatic’ boundary conditions the 
minimum Nu of 4.9, corresponding to LTP boundary 
conditions (ii), cannot be attained for any com- 
bination of s/ W and KJK.) 

In all subsequent runs, and in accordance with 
earlier work of the present authors, the values sj W = 
0.1 and K,/K = 100 were chosen as representative of 
realistic configurations and used in conjunction with 
‘generalized adiabatic’ and *generalized LTP’ con- 
ditions. The resulting set of boundary conditions will 
be referred to as “standard adiabatic” and ‘standard 
LTP’ throughout this paper. 

An impression of the influence of thermal boundary 
conditions on heat transfer rates is given by Fig. 6, 
which reports NU as a function of Ra for a non- 
partitioned square enclosure (AR = 1) under all four 
boundary conditions. Several experimental and 
numerical results by different authors are reported for 
comparison. Our results are in excellent agreement 
with the numerical predictions of Schinkel [l 1 ]_ Cat- 
ton et ai. [14] and Chen and Talaie [ 151, who assumed 
either adiabatic or LTP end walls. The agreement with 
the experimental results of Bajorek and Lloyd [4] and 
Schinkel [l I] is best when LTP conditions are 
assumed. Some disagreement exists with the exper- 
imental results of Arnold ei al. [16] especially at high 
Rayleigh numbers. 

Figure 7 reports similar comparisons for an en- 
closure having AR - 10. The experimental results of 
ElSherbiny [17] fall slightly above the present pre- 
dictions, while the predictions of Chen and Talaie [ 1 S] 
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(4 

(b) 

FIG. 5. Dependence of Nu upon s/W and k,/k for a square, non-partitioned enclosure at Ru = 3.5 x lo5 
when ‘generalized’ boundary conditions are used : (a) ‘generalized adiabatic‘ boundary conditions ; (b) 

‘generalized LTP’ boundary conditions. 

l Bajorek 8 Lloyd 141 (air) 
cBajorek & Lloyd [41 (COz) 
. Schinkel [Ill 

1E 1. &Arnold et al. [161 

- Present predictions 

-_- Schinkel [lll(ad) 
--Schinkel [ll](LTP) 
-----Chen & Talaie I151fad) 
--._-catton et al. ifrljirk 

..‘...I . 1. . . . . . . ----..I . . .“‘--I . . .- 
1E 4 L.5 

fla 
1E 6 1E 7 

FIG. 6. Comparison of results for AR = 1, non-partitioned enclosure (lines, predictions; symbols, exper- 
imental data). 
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FIG. 7. Comparison of results for AR = 10, non-partitioned enclosure (lines. predictions; symbois. exper- 
imental data). 

fall below them. The difference in Nu associated with 
the use of different boundary conditions is smaller 
than for AR = 1, but is still significant, especially at 
low Rayleigh numbers. 

The dependence of NU upon Rn can be approxi- 
mated for all aspect ratios by 

NU = 1 (Ra < 103) 

Nu = f(M) * Rn”J (Ra > 104) (7) 

with a smooth fit between the two regions. The 
exponent of Ra is slightly larger than l/4 (0.27-0.28) 
for the lower aspect ratios (0.5, 1). The function f is 
different for each set of boundary conditions. The 
local Nusselt number, Nu,., along the hot wall, com- 
puted using all four boundary conditions, for a square 
non-partitioned enclosure at Ra = 3.5 x 105, is com- 
pared with experimental results of Bajorek and Lloyd 
[4] in Fig. 8(a). ‘Standard LTP’ conditions give the 
best agreement (see also the reported values of Nn). 
Clearly, they approximate better than the others the 
actual thermal boundary conditions of the exper- 
iments (see discussion in refs. [6, 181). 

EFFECT OF THERMAL BOUNDARY 

CONDITIONS ON HEAT TRANSFER RATE 

Partitioned enclosures 
In the case of partitioned enclosures, the thermal 

boundary conditions at the partitions’ walls also play 
a role. Partitions can be assumed to be adiabatic, 
isothermal, or conducting, and their thickness and 
conductivity must be considered. By combining these 
options with those concerning the end walls, a very 
large number of possible boundary conditions ensues. 
However, in the present study the following sim- 
plifying assumptions were made (see Fig. 2). The most 
natural extension of adiabatic conditions consists of 
assuming the partitions to be also adiabatic. LTP 

conditions can be extended to partitioned enclosures 
assuming the partitions’ walls to be isothermal (at 
T = 0.5 for infinitely thin partitions, or at the appro- 
priate corner temperature along end walls in the case 
of unite-thickness partitions). Finally, ‘generalized’ 
conditions can be extended by assuming conducting 
partitions, having the same KJX ratio as the end 
walls. 

In Fig. 8(b), the local Nusselt number computed 
using the boundary conditions defined above is com- 
pared with experimental results of ref. [4] for a square 
enclosure having L/H = 0.25 at Ra = 3.5 x 105. The 
experimental points lie closest to the LTP predictions 
(see also reported values of Nu). Thus, both for par- 
titioned and non-partitioned enclosures LTP or ‘stan- 
dard LTP’ boundary conditions yield better agree- 
ment with the experimental results of Bajorek and 
Lloyd than adiabatic or ‘standard adiabatic’ ones. 

The influence of boundary conditions on heat trans- 
fer rates for different partition lengths can be observed 
in Fig. 9, which reports Nu as a function of L/H 
for Ra = 3.5 x 105, AR = 1 and all four boundary 
conditions. For short partitions, adiabatic conditions 
still give the highest value of Nu, and LTP conditions 
the lowest. However, for long partitions, adiabatic 
conditions yield low heat transfer rates, as Nu tends 
to zero in the limit of L/H + 0.5. The value of L/H at 
which the adiabatic curve falls below the others is 
-0.4 for this AR and Ru. Our results show that this 
value increases with Ra and with AR. 

For both partitioned and non-partitioned enclos- 
ures, the influence of thermal boundary conditions 
decreases with increasing aspect ratio. This is shown 
in Fig. 10, which reports the percentage difference 
between adiabatic and LTP predictions as a function 
of AR for Ra = 3.5 x 10’ and L/H = 0, 0.125, and 
0.25. As seen in the figure, the influence of boundary 
conditions is higher for partitioned than for non-par- 
titioned enclosures. 
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(b) 

FIG. 8. Nnsselt number profiles along the hot wall for a non-partitioned and a partitioned enclosure 
(experimental data [4] vs predictions using different thermal boundary conditions) : (a) non-partitioned 

enclosure. AR = 1, Ra = 3.5 x 10s ; (b) partitioned enclosure, AR = I, Ra = 3.5 x 10’. 

0 
!I 

I 

L/H ” !3 I4 

FIG. 9. Dependence of Nu on the partition length for different thermal boundary conditions (AR = I, 
Rn = 3.5 x 105). 
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FIG. 10. Percentage difference between values of Nu computed using adiabatic and LTP boundary 
conditions as a function of the aspect ratio (Ru = 3.5 x 105). 

EFFECT OF PARTITIONS ON HEAT 

TRANSFER RATES 

Figure 9 shows that, under the conditions con- 
sidered (AR = 1, Ra = 3.5 x lo’), short partitions 
(L/H < 0.125) do not reduce Nu. in fact. they may 
enhance slightly the heat transfer rate. In our com- 
putations, this was found to occur at AR = I and 2 
and Ra in the range IO’-10’. 

Figures 11 and 12 are plots of NU vs RU for AR = 1 
and 10, respectively, and for different values of L/H 
including the case of two separate coupled enclosures 
(L/H = 0.5). Examination of these figures shows that, 
for a given aspect ratio, the effect of partitions is much 
more pronounced at lower Rayleigh numbers. This is 
in agreement with refs. [4,5] and with earlier work of 
the present authors [6]. For LTP conditions (Figs. 
11 (b) and 12(b)), it can be observed that an enclosure 
having long partitions (L/H = 0.375) behaves much 
like a completely divided enclosure at low Ru, but 
much like a non-partitioned enclosure at high Ra. By 
comparing Figs. 11 and 12, it can be seen that short 
partitions (L/H < 0.25) are much more effective at 
high aspect ratios. The influence of AR on the efficacy 
of partitions is better evidenced in Fig. 13 which shows 
NU as a function of AR at Ra = 3.5 x IO5 for different 
values of L/H and for adiabatic and LTP boundary 
conditions. Short partitions are least effective at 
I < AR < 3. Thus, the case of the square cavity is not 
representative in this respect. 

The present investigation showed two basic mech- 
anisms by which partitions can reduce heat transfer 
rates in enclosures. At low aspect ratios, partitions do 
not alter the unicellular flow pattern. typical of the 
non-partitioned enclosure. Thus, their effect is limited 
to reducing the fluid flow rate along the isothermal 
walls, thus reducing moderately, and more or less 
uniformly, the local Nusselt number. This is shown in 
Figs. 14(a)-(c) for Rn = 3.5 x 10’ and AR = I. Only 

LTP results are reported. They include profiles of 
Nu_,, along the hot wall for different L/H (a), plus 
streamlines (b) and isotherms (c) for L/H = 0.25. The 
reduction in Nu for this value of L/W is only 12% ; 
the corresponding reduction in the flow rate is 
-25%. 

At high aspect ratios, on the contrary, the presence 
of partitions results in the breaking down of the 
unicell, and in the formation of secondary cells par- 
ticularly intense near the bottom of the hot wall and 
the top of the cold wall (i.e. where Nu has a maximum 
in the non-partitioned enclosure). This results in a 
strong local reduction of Nu, ; the enclosure behaves 
much like a stack of three cavities, the central one 
being scarcely affected by the partitions and the 
extreme ones being almost completely divided. Also 
the average Nusselt number decreases more than in 
the low-aspect ratio case. This is shown in Figs. 15(a)- 
(c) for AR = 10, Ra = 3.5 x 105, LTP boundary con- 
ditions. The L/H = 0.25 partitions reduce Nu by 30% 
in this case, while the corresponding reduction in the 
mass flow rate is 3 1% . 

The case L/H = 0.5 (complete partition dividing the 
enclosure in two separate zones) has been particularly 
studied, both experimentally and numerically for its 
special relevance to engineering applications such as 
muitiple-glazed soiar collectors or windows. Ander- 
son and Bejan [19] reported that a thin central alu- 
minium partition in a water-filled enclosure having 
AR = l/3 at Ra = 109-10” reduced the overall heat 
transfer rate by a factor (N+ 1)mo.6’ where N is the 
number of partitions (a factor of 0.66 for N = 1). 
Nishimura et at. [20] performed both an experimental 
and a numerical investigation. In their excrements 
the partitions were made of thin copper plates. The 
working fluid was water. the enclosure aspect ratios 
were 4 and 10 and lo6 < Ra < 109. In these exper- 
iments they found a heat transfer reduction by a factor 
of 0.42 for a single partition. In their numerical simu- 
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pletely divided) 
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FIG. 15. Influence of partitions on Nusselt number profiles, streamlines and isotherms for AR = IO, 
Ra = 3.5 x 10’ and LTP boundary conditions : (a) Nusselt number profiles along the hot wall for different 

values of L/H; (b) streamlines for L/H = 0.25 ; (c) isotherms for L/H = 0.25. 

FIG. 16. Reduction in Nu induced by a complete partition (L/H = 0.5) for AR = I and 10. 

lations (AR = 4, Pr = 6, lo4 d Ra < IO’) they (at T = l/Z), its effect consists merely of replacing 
reported a reduction by a factor (N+ 1))’ (a factor the original enclosure (having aspect ratio AR and 
of 0.5 for N = 1). Rayleigh number Ra) with two enclosures in series, 

A simplified analysis reveals that, if the central par- each having an aspect ratio 2AR and Rayleigh number 
tition is assumed to be infinitely thin and isothermal Ra/ 16. Thus, if the dependence of Nu upon AR and 
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Ra is generically indicated as Nu = g(AR, Ra), the 
expected reduction factor due to the partition is 

N~panlNn,,,.part = g(2AR, Ra/16)/~q(AR. Ra). (8) 

In the limit of high AR and high Ra. but still in the 
laminar region, Nu becomes roughly independent of 
AR and increases as Ru”~. so that the expected 
reduction factor is (l/16)‘*” = 0.5. For low AR, a 

smaller reduction factor is expected. due to Nu 
decreasing with increasing AR (Fig. 13). For low Ru 

( < I x IO”). the reduction factor will be larger, due to 

Nzc tending to 1 for Ru + 0 (equation (7)). Deviations 
from this overall behaviour will result from the ther- 

mal coupling [21, 221 in this case between the two 
demi-enclosures across a conducting partition. and 
from the finite thickness of the partition. 

Among the present computational results for 
L/H = 0.5, the ‘standard adiabatic’ and ‘standard 

LTP’ ones, in which both the end walls and the par- 
titions are assumed to be of finite thickness 0.1 W 

and conductivity lOOK, are closest to situations of 
practical interest. Note, however, that Fig. 9 shows 
the resulting NM at L/H = 0.5 to be almost coincident 
with that computed under LTP conditions (roughly 
corresponding to an isothermal partition at T = l/2). 
This indicates that the effect of the thermal coupling 
between the two demi-enclosures is not very large. 
The reduction factor predicted with ‘standard LTP’ 
boundary conditions is reported as a function of Ro 

in Fig. 16 for AR = 1 and 10. The results are coherent 
with the above analysis from a qualitative point of 
view. The issue of coupled flows in completely par- 
titioned enclosures, however, requires further and 

more detailed investigation. 

CONCLUSIONS 

A parametrical study was conducted on the efficacy 
of partitions, protruding from the end walls of a ver- 
tical rectangular enclosure. in reducing heat transfer 
rates. Over 400 cases, covering the range AR = O.S- 

10, Ra = 104-lo’, and L/H = 04.5, were computed. 
The influence of thermal boundary conditions at the 
end walls and at the partitions was studied and found 
to be relevant. specially for low-aspect ratio enclos- 
ures. ‘Generalized’ boundary conditions were intro- 
duced as more appropriate to simulate situations of 
practical engineering interest. The efficacy of the par- 
titions was found to depend in a complex way upon 
AR and Ra, and to be greatest for low Ra and high AR. 

The mechanism responsible for this large reduction in 
heat transfer rates was found to be the breaking down 
of the unicellular circulation near the regions where 
Nuv is maximum in non-partitioned enclosures. Howl 
ever, partitions having L/H < 0.25 never reduce Nu 
by more than 30%. For intermediate AR (l-2) and 
Ra (105-106), very short partitions are not effective 
and can even enhance heat transfer rates. For com- 
pletely divided enclosures (L/H = 0.5) our results 
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indicate a reduction in Nu by a factor -0.4 for 
AR = IO and high Ru (Ru > lo”), while no simple 
scaling law is applicable for small aspect ratio and Ru. 
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CONVECTION THERMIQUE NATURELLE DANS UNE CAVITE RECTANGULAIRE 
VERTICALE PARTIELLEMENT OU COMPLETEMENT CLOISONNEE 

R&m&On Ctudie numkiquement l’effet sur les flux thermiques de partitions symetriques partant du 
centre des parois terminales dune cavite rectangulaire verticale. La cavite a des parois opposees isothermes 
a des temperatures differentes. Le nombre de Rayleigh varie de 10“ a 10’ et le rapport de forme de 0,5 a 
10. L’tpaisseur des cloisons est fixee &gale a un dixibme de la largeur de la cavite. Leur longueur adim- 
ensionnelle (L/H) varie de zero (cavite sans cloison) a 0,5 (deux cavites s&par&es). On considere dans 

l’etude I’effet de differentes conditions aux limites sur les parois terminales et sur les cloisons. 

NATURLICHE KONVEKTION IN EINEM TEILWEISE-ODER VOLLSTANDIG- 
UNTERTEILTEN SENKRECHTEN RECHTWINKLIGEN HOHLRAUM 

Zusammenfaasung-Der EinfluO symmetrischer Trennwande, die in einem rechtwinkligen vertikalen 
Hohlraum in der Mitte der Stirnwlnde herausstehen. auf den Warmeiibergangskoeffizienten wird numer- 
isch untersucht. Der Hohlraum besitzt gegeniiberliegende isotherme W&de mit unterschiedlichen Tem- 
peraturen. Die Rayleigh-Zahl wird von lo4 bis lo7 und das Seitenverhaltnis von 0,5 bis 10 variiert. 
Die Dicke der Trennwlnde ist unverlnderlich. Sie entspricht einem Zehntel der Hohlraumbreite. Ihre 
dimensionslose Lange (L/H) wird von 0 (nicht unterteilter Hohlraum) bis 0,5 (zwei getrennte Hohlraume) 
variiert. Die Auswirkung unterschiedlicher thermischer Randbedingungen an den Stirnseiten und an den 

Trennwlnden wird in die Untersuchung einbezogen. 

ECTECTBEHHOKOHBEKTZlBHbIfi TEl-IJIOl-IEPEHOC B ~ACTWIHO WI&4 l-IOJIHOCTbIO 
CEKI&iOH&WOBAHHbIX BEP’MKAJIbHbIX l-IPIMOY~OJlbHbIX IIOJIOCTIIX 

AhmOT~%cnemro Accnenyerca wuinmie cmbfhfe3pwmb1x neperoponox, ycraHoanemiblx B uewpa- 
JIbHOii WlCTH TOpWSbur IPaHtil.l BePTHKCUIbHOfi IIOJIOCTH, Ha HHTCHCHBHOCTb TellJlOlIe~HOCzl. Ha IIpOTH- 

BOlIOJIOYCIibIX H3OTepME’ICCKlix cTeHxax llOJlocrH noJI.nepYcmaIoTcn p a3mmme TermepaTypbI. 3HaWHHn 

9Hcna P3nea H3bfeHmxcK B mmlla3oHe w-107, a OTHOLIIWHe pa3rdepoe IIOJIOCTE (H/W) OT 0,5 ,I&0 10. 
Tommma lIQX~O~LtOK IIOCTORHHP H COCTaBJlReT OnHy J,eCnTyrO ¶aCTb OT UIApAHbl IIOJIOCTH. kIX ik3- 

pa3MepHan .UJxIiHa (L/H) H3hfemeTCII OT q’nn (HecerqHompoBaHHan IIOJIOCT~) no 45 (n~e pasnenbribre 
nonocrli). RccnenoBaJIocb mmnmie pa3mDIHarX TeIUTOBbIX yCJlosHl Ha TOpIWBblX rpamax H nepero- 

pO,JI&3xHaHHTeHCHBHOCTbTUlJlOlIe~HOCa. 


